## TASK 2.3. CODES

We define the distance $d_{\mathrm{H}}(X, Y)$ between two strings $X$ and $Y$ of equal length to be the usual Hamming distance, i.e. the number of positions in which $X$ and $Y$ differ.

For example, $d_{\mathrm{H}}(1001,0010)=3$ and $d_{\mathrm{H}}(1001111,0010101)=4$.
Let $n \geq 1$ and suppose $C=W_{1}, W_{2}, \ldots, W_{M}$ is a list of $M$ binary strings of length $n$.
We consider $C$ as a circular list and define the distance $d_{C}\left(W_{\mathrm{i}}, W_{\mathrm{j}}\right)$ between two strings $W_{i}$ and $W_{j}$ in the list as $d_{C}\left(W_{i}, W_{j}\right)=\min \{\operatorname{abs}(i-j), M-\operatorname{abs}(i-j)\}$.
Suppose $k$ satisfies $1 \leq k<n$. We say that $C$ is a circular code of length $n$ and spread $k$ if for every $i, j, 1 \leq i, j \leq M$ the following hold
(1) If $d_{\mathrm{C}}\left(W_{i}, W_{j}\right) \leq k$, then $d_{\mathrm{H}}\left(W_{i}, W_{j}\right)=d_{\mathrm{C}}\left(W_{i}, W_{j}\right)$;
(2) If $d_{\mathrm{C}}\left(W_{i}, W_{j}\right)>k$, then $d_{\mathrm{H}}\left(W_{i}, W_{j}\right)>k$.

A central problem in the study of circular codes is to determine the maximum number of strings in a circular code of length $n$ and spread $k$. The exact value of this number is known only for some small values of parameters $n$ and $k$. Your task is for a given pair $n$, $k$ to construct a circular code containing as many as possible strings.

| Test \# | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $n$ | 5 | 6 | 6 | 7 | 7 | 8 | 8 | 9 | 10 | 10 |
| $k$ | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 3 |

## You have to submit 10 files containing your codes with parameters from the table above. Do not submit any program!

The first line of your file should contain

## \#FILE code $t$

where $\boldsymbol{t}$ is the test number.
The next $M$ lines should contain the successive strings of the constructed code of length $n$ and spread $k$.
For each test case, the best solutions among all competitors will get 10 points. If the best solution is a code with $B$ strings, and you have submitted a correct solution with $M$ strings your score will be $10 M / B$. The score will be rounded to the first decimal digit for each case. The total score will be rounded to the nearest integer.

