ADDITION AND MULTIPLICATION
The computer you are about to use is very special – it only knows the constant 1 and can only perform two operations: addition and multiplication. Bad enough, isn’t it? It has, nevertheless, its very good sides: each temporary result of a previous operation is being stored into memory and can be used as an operand in next calculations, at will even on both sides of the operation. Moreover, all possible operations with all possible couple of operands are being executed simultaneously, in one step. We want to find out in which step a given integer N will appear in the set of already calculated integers.
We shall explain everything by example. Let N=7. In which step of the “avalanche-like” calculating process will 7 appear? It all starts, naturally, with the sole known constant and there are not much alternatives for the first step: 1+1=2. (We could use multiplication: 1*1=1, but this does not lead to a new value, we already have the One.) What next? Two more values are added to the existing ones (1 and 2) in the second step: 3=2+1 and 4=2+2(=2*2). Now it is clear that in the third step 7 will appear, too: 7=4+3.

N=11 appears in the fourth step as 11=5+6 (=7+4= 8+3= 9+2, all the same, but not as 10+1, because 10 appears in the fourth step, too).
Write a program addmul which finds out the step when an input positive integer N will appear.

INPUT
A positive integer N is read from the standard input.
OUTPUT
Write to the standard output one line containing a single integer – the number of the step when N appears.

Constraints
1 ≤ N ≤ 10000.
EXAMPLE
Input
26

Output
5

Explanation: After the first step we have: {1}, {2}, {3,4}, {5,6,7,8,9,12,16}. There is no pair among these integers to reach 26, which means that 26 is not in the fourth step. However, 13 can be calculated (13=7+6=8+5=9+4=12+1), so 13 is in the fourth step. Then 26 (=2*13, for example) is in the fifth step.
