2circles

100 points

Source code:	2circles.c, 2circles.cpp, 2circles.pas
Input file:	2circles.in
Output file:	2circles.out
Time limit:	4 seconds
Memory limit:	64 MB

Task

We will consider a convex polygon with N vertices. We wish to find the maximum radius R such that two circles of radius R can be placed entirely inside the polygon without overlapping.

Description of input

The first line of input contains the number N. Each of the next N lines contains a pair of integers X_{i}, $y_{i}-$ representing the coordinates of the $i^{\text {th }}$ point, separated by space.

Description of output

You should output a single number R - the desired radius. Output R with a precision of 3 decimals.
You will pass a test if the output differs from the true answer by at most 0.001 .

Constraints

- $3 \leq \mathrm{N} \leq 50000$
- $-10^{7} \leq \mathrm{x}_{\mathrm{i}} \leq 10^{7}$
- $-10^{7} \leq Y_{i} \leq 10^{7}$
- The points are given in trigonometric (anti-clockwise) order.
- For 10% of tests $\mathbf{N}=3$
- For $\mathbf{4 0 \%}$ of tests $\mathbf{N} \leq 250$

Example

2circles.in	2circles.out	Explanation:
4	0.293	The maximum radius is obtained when the centers of the two circles are placed on 1 0
0	1	
one of the square's diagonals.		
The radius can be calculated		
exactly and it is:		

$19^{\text {th }}$ Balkan Olympiad in Informatics
Bistrița, 3-9 July 2011
Day 1

2circles.in	2circles.out	2circles.in	2circles.out
4	0.500	6	2.189
0	0		0
3	0	8	0
3	1	8	6
0	1	4	8
	2	8	
		0	4

