Task D3. PASSWORD

It is easy in the movies – on third try the “master” finds out the password! Don’t let them mislead you – nowadays passwords are impossible to attack without extra information. The good new is that you have additional information: you know a word, which definitely is the password root; and you know the action performed on the word several times to obtain the desired password. That’s quite a lot!
The action allowed to be performed upon the word sounds like this: one can select any three consecutive letters and “rotate” them counter-clockwise: the first one takes the place of the second, the second – of the third, and the third – of the first. The other letters are left on their places.

Write a program password to determine how many passwords can be obtained out of the given word, applying this action arbitrarily many times, every time on an arbitrarily chosen triple of consecutive letters.
Input

One line with the given word is read from the standard input.

Output

The program should write one single line to the standard output, containing only one positive integer – the number of different passwords that can be obtained by applying the mentioned action as many times as one wishes, every time on an arbitrary chosen triple of consecutive letters.

Constraints

The input word consists of at least three and not more than seven English capital letters.

EXAMPLE

Input

KOKOC

Output

30

Explanation: Applying the described action, one can obtain the following passwords out of the word KOKOC and only them: KOKOC, KKOOC, OKKOC, OOKKC, KOOKC, OKOKC, OKCOK, COKOK, KCOOK, KOCOK, CKOOK, OCKOK, OOCKK, COOKK, OCOKK, OKOCK, OOKCK, KOOCK, OCKKO, KOCKO, CKOKO, CKKOO, KCKOO, KKCOO, KOKCO, KKOCO, OKKCO, KCOKO, OKCKO and COKKO.
Solution:
The constraints of the problem are low and allow many different kinds of solution. The special cases of three- and four-letter words can be considered even manually and if programmed correctly can give 40 points.

A full solution can be programmed, for example, in the following way:
· Of course, which symbols exactly are in the word does not matter at all. While having at most 7 different letters, we propose to replace them wit the digits from 1 to (at most) 7, giving to the same letters the same digital values. This process results in one from three up to seven digit positive integer, which can be kept in a long (int) type variable and makes life easier. The lack of this consideration, however, is not fatal for the problem.
· We can apply the most natural exhausting algorithm: we keep in the first element of an array the given string (number, if converted). We apply the action on each element of the array with all possible starts, checking each obtained value for existence in the array. If not – we add it to the array. The whole process ends when we pass through the array without adding anything.
The array size (and the size of the result, of course) can not exceed 7!=5040 (in fact – half of this), but the contestants can at least guess a limit of 10000000.

For longer words this algorithm works slowly and requires additional knowledge.
Realization:

#include <iostream>

#include <string.h>

#include <stdlib.h>

using namespace std;

int main(void)

{long a[5040],s,d[9],d1,d2,d3;

 int n,i,j,k,t,cnt=1;

 long c;

 char b[16],ch,c1;

 cin>>b;

 //Replace the same letters with same digits
 ch='1';

 for (i=0;b[i];i++) if (b[i]>'9')

 {c1=b[i];

 for (j=i;b[j];j++) if (b[j]==c1) b[j]=ch;

 ch++;

 }

 //Set the first element of the array
 a[0]=atol(b);

 n=strlen(b);//Digit (letter) count
 //Array with the degrees of ten
 d[0]=1;

 for (i=1;i<9;i++) d[i]=10*d[i-1];

 //Main cycle
 do

 {c=cnt;//Element count in the beginning of the process
 for (i=0;i<cnt;i++) //For each element in the array
 for (j=0;j<n-2;j++)//For each possible start
 {//Apply the operation
 s=a[i];

 t=s%d[n-3-j];//Symbols to the right do not change -

 //remember them in t

 s=s/d[n-3-j];//Remove them from s

 d1=s%10;//The rightmost digit
 s=s/10; //Remove it from s

 d2=s%10;//Next digit in the triple
 s=s/10;

 d3=s%10;//j-th digit in the number
 s=s/10;

 //Concatenate digits to the right, rotating them
 s=10*s+d1;

 s=10*s+d3;

 s=10*s+d2;

 s=d[n-3-j]*s+t;//Concatenate the unchanged tail
 //Check if already in the array
 for (k=0;k<cnt;k++) if (a[k]==s) break;

 if (k>=cnt) a[cnt++]=s;//Add if not
 }

 }while (c<cnt);//Quit, if cnt not changed
 cout<<cnt<<endl;

 return 0;

}

K�
O�
K�
O�
C�
O�
B�
�
K�
O�
C�
K�
O�
O�
B�
�
K�
K�
O�
C�
O�
O�
B�
�
K�
K�
O�
C�
B�
O�
O�
�
K�
K�
B�
O�
C�
O�
O�
�
K�
K�
C�
B�
O�
O�
O�
�
Example for reaching from KOKOCOB to KKCBOOO

