Task B Solution
First we need to build a graph which vertices are the cities and the edges are the existing roads with weights – the price for repair for each road. After that we build the minimal spanning tree (MST) using one of the known algorithms. The solution I am offering uses the algorithm of Kruskal.

The weight of the MST is the integer that shows the minimal price and its edges are the roads to be repaired.

For the realization of the algorithm of Kruskal the most appropriate present of the graph is as list of edges. For this purpose we define the struct edge the following way:

struct edge

{

  int x, y, t;

};
Here x is the first vertice of the edge, y is the second one, and t is its weight. In the process of solving the task we will need to sort the list of edges twice – the first time it will be to apply the algorithm of Kruskal and the second time is before we print the edges from the MST. In the first case the sort is done according to the weight of the edges and the second lexicographical. Here are the defined functions for comparison between two edges according to the kind of the sort.
int cmp(edge e1, edge e2)
//compares the weights of the edges
{

  if(e1.t<e2.t)return 1;

  if((e1.t==e2.t)&&(e1.x<e2.x))return 1;

  if((e1.t==e2.t)&&(e1.x==e2.x)&&e1.y<e2.y)return 1;

  return 0;

}
int cmp1(edge e1, edge e2)
//compares lexicographical
{

  if(e1.x<e2.x)return 1;

  if((e1.x==e2.x)&&e1.y<e2.y)return 1;

  return 0;

}

The list of edges needs to be presented as a vector. The next function reads the data from the standard input and simultaneously builds the graph.

void read()

{

  int i, u,w,d;

  edge e;

  cin>>n>>m;

  for(i=1;i<=n;i++)

  cin>>price[i];

  for(i=1;i<=m;i++)

  {

    cin>>u>>w>>d;

    if(u>w)swap(u,w);

    e.x=u;

    e.y=w;

    if(d%2==0)e.t=d/2*price[u]+d/2*price[w];

    else e.t=(d/2+1)*price[u]+d/2*price[w];

    v.push_back(e);

  }

}
For the realization of the algorithm of Kruskal we use a structure from the kind - Union-Find. In this case it is presented with the array parent, containing the parents of each vertice from the graph. The function Find finds the parent of the vertice, given as its parameter. The function Union combines two sets with different parents. More exactly it includes the elements from the set of which the second parameter belongs in the set that the first parameter is a root.
int Find(int u)

//returns the parent of u
{

  int i;

  i=u;

  while(parent[i]!=i)i=parent[i];

  return i;

}

int Union(int p,int q)

//includes the elements of the set that q belongs to into the set with root p
{

  int i;

  i=q;

  while(i!=parent[i]){q=parent[i];parent[i]=p;i=q;}

  parent[i]=p;

}

The next function realizes the algorithm of Kruskal, using the described tools. The MST is as a result in the vector of edges tree and it’s weight is in the variable t_MST.
void MST()

{

  sort(v.begin(),v.end(),cmp);//sorts the edges according to their weight
  int i,brt=0,r;

  for(i=1;i<=n;i++)parent[i]=i;//places each vertice in its own set
  i=0; 
//goes trough all the edges of the graph and unites the sets of which each edge’s ends belong.
  while(brt<n-1)
  {

    r=Find(v[i].x);

    if(r!=Find(v[i].y))

    {

      Union(r,v[i].y);

      tree.push_back(v[i]);t_MST+=v[i].t;

      brt++;

    }

    i++;

  }

}

In the main function, the edges of the MST are sorted lexicographically and are printed.

int main()

{

  int i;

  read();

  MST();

  sort(tree.begin(),tree.end(),cmp1);

  cout<<t_MST<<endl;

  for(i=0;i<n-1;i++)

  {

    cout<<tree[i].x<<' '<<tree[i].y<<' '<<tree[i].t<<endl;

  }

  return 0;

}

