Task

Chaos and Trouble are playing a game. Chaos begins by picking a positive integer that does
not exceed N. Trouble then tries to find this integer: on each move, he asks Chaos a question
of the form “Is your number one of a1, asg, ..., ax?’ and Chaos answers either Yes or No.

There is a catch, though: Chaos may decide at some point that the game is not interesting
enough as it stands and start lying on every question to make things somewhat more exciting.
So, Trouble knows that Chaos is going to answer all questions correctly up to a point and give
only false answers after that, but he does not know how many true answers to expect. (If Chaos
finds the game particularly entertaining, she may answer all questions correctly. On the other
hand, if she decidedly doesn’t find the game particularly entertaining, all of her answers could
be false.)

Your task is to write a computer program that helps Trouble find Chaos’s number by asking
as few questions as possible.

Analysis and solution

For starters, here is what appears to be the most straightforward strategy for Trouble.

Let # be Chaos’s number and k = [log, N|. For his first k& questions, Trouble implements a
simple binary search: his i-th question should be equivalent to “What is the i-th binary digit of
x—17".

Following this, on move k + 1 Trouble asks some question that he knows the answer to, e.g.,
“Is = greater than zero?”. If Chaos answers correctly, then all of her previous answers must
have been correct as well and Trouble is done. If not, then Trouble knows that all of Chaos’s
subsequent answers are going to be false — which is just as well as them being true, as he can
simply flip the answers in his head.

Furthermore, Trouble knows that Chaos has answered the first i questions honestly and that
she has lied on the next k—1 questions for some 0 < i < k. Each option for ¢ uniquely determines
the true answers to the binary search questions, leading to at most one possibility x; for . A
second binary search over just xg, =1, ..., T, and Chaos’s number is found.

So, k + 1+ [logy(k + 1)] questions suffice. Can Trouble do any better? As it turns out, yes,
but in order to see how we need to analyse the game somewhat more deeply.

Consider the situation that Trouble finds himself in right after Chaos’s first answer. He knows
that either (a) she answered correctly, her number is in some subset A of {1,2,..., N}, and her
subsequent answers are going to follow the same rules as if the game had just started, or (b) she
lied, her number is in the complement B of A, and all of her subsequent answers are going to be
false.

The key observation is that this situation self-replicates!

More precisely, let G(A, B) be the situation in which Trouble knows that either (a) Chaos’s
number is in the set A and her subsequent answers are going to follow the same rules as if the
game had just started, or (b) Chaos’s number is in the set B and her subsequent answers are all
going to be false. (In all situations relevant to our analysis, the sets A and B are going to be
disjoint.)

Suppose that Trouble next asks Chaos if her number is in the set C. Write C as C = A; U B;
where A = A; U A5 is a partitioning of A and B = B; U By is a partitioning of B.

Suppose that Chaos answers Yes. Then either she is telling the truth and her number is in
Ay, or she is lying and her number is in As U By. This means that we have entered the situation
G(Al, A2 @] BQ)

Suppose, on the other hand, that Chaos answers No: analogous reasoning shows that in this
case we find ourselves in the situation G(Aq, 41 U By).

What Trouble needs to do is reach a situation G(A, B) such that either |[A| =1 and |B| =0
or |[A| =0 and |B| =1, and in as few steps as possible. How does he do so?

In order to make things somewhat easier for Chaos (and ourselves), let us augment the rules
of the game a bit: Chaos does not need to pick a specific number in advance anymore, she
just needs to give answers that are consistent with the rules of the game and with at least one
possibility for a number that she could have picked. Clearly, the worst-case scenario for Trouble
is precisely the same in both games. Furthermore, when analysing a situation G(A, B), we can
obviously do away with the specific sets A and B and retain only the number of elements a and
b in each.

With that said, the game starts to look as follows: in the beginning, Trouble and Chaos are in
the situation G(N,0). On each turn, given a situation G(a,b), Trouble chooses two partitionings
a = aj; + as and b = by + bo, offers Chaos a choice between the situations G(ay,as + bs) and
G(az2,a1 +b1), and Chaos picks one (though not G(0,0), if it is an option at all). Trouble strives
to reach G(1,0) or G(0,1) as quickly as possible, and Chaos is doing her best to prevent this.

Let h(a,b) be the number of moves that Trouble needs given best play by Chaos. The
preceding paragraph gives us a recurrence relation for h(a, b):

h(a,b) =1+ min max{h(ar,as + b2), h(az,a; +b1)}.

a=aj+az

b=b1+b2

This can be rewritten as

h(a,b) =1+ min max {h(p, q), h(u,v)},
appropriate (p,q) and (u,v)
where “appropriate” means that (p,q) and (u,v) are a pair of symmetric points within the
parallelogram P(a,b) of vertices (0,a), (a,0), (0,a +b), and (a,b).

This recurrence suffices to compute h(a,b) for all a and b. Indeed, order all (a, b) in ascending
order by a+b and, in the case of a tie, in descending order by b: then evaluating h(a,b) is always
reduced to evaluating h(x,y) at points (z,y) that precede (a,b). Let us compile a table for h(a, b)
[See Table 1].

Q

B W WwWwWwwhNn -~ O o
R R R R W W W NN O
CU Ot O s s s Wi
Ut Ot Ot Ut Ot O Ot Ot Ot U W
Sy Ot Ot Ot Ot O Ot Ot O U s
(o2l el N> Ne) e e o No e R
[N e N Mo e e oo NN Ro
DO D
O OO OO Oy o
I RN BN BN BN BN B e B B | e}

© 00O Ui W~ O

Table 1

Notice that we do not yet know how to compute h(a,b) very efficiently: the recurrence relation
requires that we comb through about %ab possibilities until we know where the minimum is
attained, so if we desire to find h(a,b) then generating the relevant portion of the table is going
to take a number of steps on the order of (a + b)*.

A natural guess would be that the minimum is always attained at the center of P(a,b).
Translating this back to a strategy for Trouble, he should always play so that a; and as are as

close as possible to § and b; and by are as close as possible to g. (In the case when a and b are
both odd, this does not determine Trouble’s move uniquely. Experimenting with small values
for a and b suggests that we should take a; = [%], az = [%], by = | %], and by = [£].) Actually,
this guess is incorrect and the strategy that it leads to is not optimal — but it is still better than
the naive strategy that we discussed in the beginning!

Let us investigate further. The values in each column appear to grow very slowly, so it makes
sense to compress the table by retaining only the points where those values increase strictly. To
this end, let ¢(a, k) be the largest b such that h(a,b) < k. The recurrence relation for h(a,b)
leads to the following recurrence relation for c(a, k):

cla, k) = max [e(u,k — 1) + e(v, k= 1)] — a,
uguc(:,gﬁl)
v<c(u,k—1)

and the table for c(a, k) looks like this [See Table 2]. (Here, ¢(a,k) = x means that h(a,b) > k
for all b.)

[0 1 2 3 4 5 6 7 8 9
0 1 0 X X X X X X X X
1 2 0 X X X X X X X X
2 4 1 X X X X X X X X
3 8 4 0 X X X X X X X
4 16 11 6 X X X X X X X
5 32 26 20 14 8 X X X X X
6 64 57 50 43 36 29 22 15 8 X
71128 120 112 104 96 88 80 72 64 56
8 | 256 247 238 229 220 211 202 193 184 175
9 | 512 502 492 482 472 462 452 442 432 422

Table 2

The pattern is now clear: the numbers in row k form an arithmetic progression that starts
at 2¥ and decreases by k + 1. Given the recurrence relation for c(a, k), this is easily verified by
induction. When, though, does the progression stop?

Consider the last non-x term c(myg, k) in row k. The recurrence relation tells us that there
are u < v such that my = u+wv, c(u,k—1) > v, and ¢(v,k — 1) > u. Some experimentation with
small numbers suggests that we should turn our attention to the last term c¢(sx—1,k — 1) in row
k — 1 such that c¢(sg_1,k — 1) > sx_1: setting u = v = sp_1 gives us my > 2sx_1, and the bound
is tight for 3 < k < 9. Is there any k£ > 10 such that my > 2s,_17 Let us check.

If v < sg_1, then mp = u+v < 2sp_1. If v > sp_1, then mp =u+v < c(v,k—1)+v <
c(sg—1+1,k—1)+sk_1+1 (since c(w, k—1)+w is a strictly decreasing function of w) < 2s,_1+1
(since sg—1+1 > sp_1 gives us ¢(sg—1+1,k—1) < sp_1+1 by the definition of s;_1). Therefore,
the only way that we can have my > 2s,_1 is if ¢(sg—1+1,k—1) = sp_1, u = Sg—1, v = Sp_1+1,
and my = 2s,_1 + 1.

Since

cla, k) =2% —a(k+1)

as long as a < my, this allows us to put together and prove by induction precise formulas for s

and my: for all k
2k
k= {k+2J

and for all k > 1
k—1

= 2 _—

T {k + 1J er

where ej, = 0 if k + 1 does not divide 2*~! + 1 and e, = 1 otherwise. (It is not immediately
obvious if there are any k > 3 such that k 4 1 divides 2*~! + 1. As it turns out, there are, and
the least one is k = 49736.) The explicit formula for h(a,b) is then

h(a,b) is the least positive integer k such that a < my and a(k 4 1) +b < 2%,

What does all of this tell Trouble (who by this point has potentially become quite confused)
about optimal play? Once he has calculated k = h(a, b), he needs to find a partitioning a = a;+as
such that c¢(ay,k — 1) > ag and c(az,k — 1) > ay. For any such partitioning, he would then be
able to find b = by + be such that c¢(ay,k—1) > as+ b1 and ¢(ag, k—1) > a3 +bs. Since taking a;

and ag to be as close to 5 as possible always works, he might as well do that: so, set a; = LQJ

2
and ap = [2]. As to the partitioning of b, for a even clearly by = [%J and by = %W does the job,
whereas for a odd it is easy to verify that we can safely set b = LHTHJ and by = [Hg;l—‘

As a finishing touch, let us look at the actual optimal number of questions that Trouble needs
to find Chaos’s number. Substituting a = N and b = 0 in the formula for h(a,b), we see that for

N > 2 this number is the least positive integer k such that
k-1

k+1

N<2{ J—l—ek

where ey, is defined as above. Asymptotically,
k =logy N + log, log, N + O(1),
same as in both the naive and improved strategies!

[How do the naive and improved strategies compare to the optimal one, in more precise
terms?]

[What about the variant of the game in which Trouble has to precommit to the series of
questions that he is going to ask?]

[What about the variant of the game in which Chaos switches between telling the truth and
lying a bounded number of times? What is the asymptotics of the optimal number of questions
in this game?]

[What about the variant of the game in which Chaos may lie on no more than p questions
out of every ¢ successive ones, e.g., with p =1 and ¢ = 37)

