ІХ НАЦИОНАЛЕН ЕСЕНЕН ТУРНИР ПО ИНФОРМАТИКА И

ИНФОРМАЦИОННИ ТЕХНОЛОГИИ

„Джон Атанасов“

Шумен, 28.11.2009 г.
Група B (9-10 клас)
Task B1. Handshakes – solution hint
Because of the fact that each contestant has two possible directions, for a string of limited n number contestants there are 2n possibilities. If we assume that the handshakes will continue to infinity, in a certain moment certain condition of the string is going to reappear. If we examine what happens after the handshake of a couple of contestants, we are going to notice that the positions of the R and L signs swap – R floats to the right and L to the left. Now, having in mind that the floating of the signs is strictly in a direction increasing the distance between them, their positions before the swap is never going to happen again. As a conclusion we can say that there are no conditions leading to reappearing of some of the contestants’ string conditions; in other words the handshake process is limited.
By observing the sign floating we can reach to a method for its solution. It is obvious that each L sign while moving to the left is going to pass by each R sign before it. Each ‘pass by’ is a single handshake. Thus traveling through the string from left to right we have to count the R signs encountered to this moment and add this number to the total handshake count upon encountering with an L sign.
For determining the duration of the handshake process we have to consider that the L signs float to the left without changing their initial order. Thus the entire process will continue to the moment when the farthest to the right standing L sign reaches its final position behind the previous Ls. In addition to the time for swapping of the farthest L sign with the Rs before it, we have to take into consideration the time in which it is going to wait for the appearance of a R sign to its left. For determining the “wait” time, let’s have a look at the following tables, representing the handshake process (R and L swapping)
…R R R R L L L…
initial moment
…R R R L R L L…
after 1 round (s)
…R R L R L R L…
after 2 round (s)
…R L R L R L R…
after 3 round (s)
Table А
…Lt R R L?…
initial moment
…Lt-1 R L? R…
after 1 round (s)
…Lt-2 Lt-2+1R …
after 2 round (s)
Table B
From the tables we come to the following conclusions:

-
If we have a number of consecutive Rs followed by a number of consecutive Ls, the first L participates in the swapping process without waiting and each following L waits a single round (handshake) more than the waiting of the previous L (Table A).
-
While floating to the left the first L sign can reach its final position without any waiting time.
-
While floating to the left the first L sign can reach the last waiting L sign from a previous L sign group (Table B). Let us name the number of the waiting rounds to the initial moment of the last L of the previous L group with t and with p the number of the Rs between the two L groups (on the Table B, p = 2). Within p rounds the catching up L sign is going to swap with the Rs between the L groups. With that number of rounds is decreased the waiting time of the reached last L of the previous group. Having all that into consideration, the waiting time of the catching up L is: t – p + 1
Conclusion:

-
We can ignore a L-group in the beginning of the string because it is not going to participate in the process;

-
The first of the rest Ls in the string has 0 waiting time;

-
Each L sign increases the waiting time for the following L sign (not necessarily consecutive) with a single round in comparison to its time;

-
Each R sign decreases the waiting time of the following L in the string with a single round if it is positive.
The code on C++ (ver. 1)
#include <iostream>

#define L 'L'

char A[100001];

long long swaps, waits, seconds;

int left_R, i;

int main() {

 std::cin>>A;

 for (; A[i]==L ; i++); // skip leading L

 for (; A[i] ; i++)

 if (A[i]==L) swaps+=left_R, seconds=left_R+waits++;

 else left_R++, (waits?waits--:0);

 std::cout<<seconds<<' '<<swaps<<std::endl;

 return 0;

}
The code on C++ (ver. 2)
#include <iostream>

#define L 'L'

char A[100001];

long long swaps, waits, seconds;

int left_R, i, j;
int main() {

 std::cin>>A;

 for (; A[i]==L ; i++); // skip leading L

 for (; A[i] ; i++) {
 for(j=i; A[i]==A[i+1];i++);

 j++ = i-j;

 if (A[i]==L) swaps+=left_R*j, seconds=left_R+(waits+=j)-1;

 else left_R+=j, (waits-=(waits>j?j:waits));
 }
 std::cout<<seconds<<' '<<swaps<<std::endl;

 return 0;

}
