	
	0
	1
	2
	3
	4
	5
	6
	7

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	7
	0;6
	1;5
	2,4
	3
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	2;4
	1;3;5
	0;6
	7
	
	

	
	
	
	
	
	
	
	
	

STRIP
Consider a strip of breadth 1, length n, and ignorable thickness, made up of unit squares. Starting from one of its ends (the left one), we name each of the vertical segments using the non-negative integers from 0 to n, as shown in the picture (where n=7). We can only fold the strip along these segments, assuming that after this the two parts are being glued together and are no longer straightened again. Naturally, after folding, some of the named segments match, forming one, which has already got more “names”. Each name is significant. A situation after folding along segment 3 is shown in the picture. There are segments having two names, after this operation. We can equally say 1 or 5, for example, and mean the same segment. After another folding along segment 2 (we can also say “segment 4”, it’s all the same), there will be a segment having even three names, as one can see: (1;3;5). Let’s mention that if we had “folded” the strip along segment 3 instead, for example, we would simply have revolved the strip with no changes either in naming or in its length. We can call a folding like this “empty”: it is not illegal; it only makes no significant changes.
In this manner, a set of k integers, each in the interval from 0 to n, uniquely defines a sequence of folds of the strip. Write a program strip which finds out what is the length of the strip after their execution.
INPUT: The following data come from the standard input:
· Line 1: two space separated positive integers n and k;

· Line 2: k non-negative space separated integers, each less or equal to n.

OUTPUT: Write to the standard output one line with a single integer: the length of the strip after the consecutive applying of the given k folds.

Limitations: n has no more than 18 decimal digits, k≤10000.

EXAMPLE 1:

Input:

7 2

3 2

Output:

3

EXAMPLE 2:

Input:

9 5

5 9 2 8 3

Output:

2

Explanation: The segment names look as follows:

Starting situation: {0 1 2 3 4 5 6 7 8 9}.

Consecutively applying the folds:

({0 (1;9) (2;8) (3;7) (4;6) 5} ({(1;9) (0;2;8) (3;7) (4;6) 5} ({(0;2;8) (1;3;7;9) (4;6) 5} ({(0;2;8) (1;3;7;9) (4;6) 5} ({(1;3;7;9) (0;2;4;6;8) 5}.

Solution:

A realization of this problem as specified requires multiple name maintenance for each segment using appropriate structures. The most naïve solution might model the strip and the folding process. Of course, such modeling is of high complexity (proportional to nk) and can only manage the light tests (for small n). We provide an illustration (using STL). Considering of some specifics (skipping the “empty” folds, for example) can improve a solution like this.

	0
	1
	2
	3
	4
	5
	6
	7

	3
	2
	1
	0
	1
	2
	3
	4

	0
	1
	2
	3
	4
	5
	4
	3

The problem limitations imply a lower complexity (proportional to k2) algorithm. Here is an idea that shows the way to this kind of solution: to re-numerate the different segments left on each step. We are, naturally, interested only in those of them, which are next to be folded along – all after the current fold. To make the consideration easier, we assume that if the folding place is to the left of the middle of the strip, we will fold the left part over the right one, otherwise – the right one over the left one. (The way we carry out the folding affects neither the length of the remaining strip, nor segment naming.) The numbers, corresponding to the segments after the folding, are obtained by obvious rules. We also keep the current strip length actual. Here is the way the process looks like for the example data:

	7
	2
	Length
	
	9
	5
	
	
	
	Length

	3
	2
	7
	
	5
	9
	2
	8
	3
	9

	
	1
	4
	
	
	1
	2
	2
	3
	5

	
	
	3
	
	
	
	1
	1
	2
	4

	
	
	
	
	
	
	
	0
	1
	3

	
	
	
	
	
	
	
	
	1
	3

	
	
	
	
	
	
	
	
	
	2

Realizations:

· modeling the strip, complexity of nk:

#include <iostream>

#include <deque>

#include <set>

#include <algorithm>

#include <iterator>

using namespace std;

int const MAXN=10001;

long long n;

long long k;

long long a[MAXN];

deque <set <long long> > Names;

void init(void)

{

 for (long long i=0;i<=n;i++)

 {set <long long> a;

 a.insert(i);

 Names.push_back(a);

 }

}

bool fold(long long place)

{

 long long i,j,k,s=Names.size();

 if (s<=2) return true;

 for (i=0;i<s;i++)

 { set<long long>::iterator p=Names[i].find(place);

 if (p!=NULL && p!=Names[i].end()) break;

 }

 if (i==0 || i==s-1) return false;

 if (i<=(s-1)>>1)

 { for (j=i+1,k=i-1;k>=0;j++,k--)

 set_union(Names[j].begin(), Names[j].end(),

 Names[k].begin(), Names[k].end(),

 inserter(Names[j], Names[j].begin()));

 for (j=0;j<i;j++) Names.pop_front();

 }

 else

 { for (j=i-1,k=i+1;k<s;j--,k++)

 set_union(Names[j].begin(), Names[j].end(),

 Names[k].begin(), Names[k].end(),

 inserter(Names[j], Names[j].begin()));

 for (j=i+1;j<s;j++) Names.pop_back();

 }

 return false;

}

int main(void)

{

 int i;

 cin>>n>>k;

 for (i=0;i<k;i++) cin>>a[i];

 init();

 for (i=0;i<k;i++) if (fold(a[i])) break;

 cout<<Names.size()-1<<endl;

 return 0;

}

· re-numbering, complexity of k2:

#include <iostream>

using namespace std;

int const MAXN=10001;

long long n;

long long k;

long long a[MAXN];

void fold(int start)

{int i;

 long long t=a[start];

 if (t==0 || t==n) return;

 if (t<=(n>>1))

 {for (i=start;i<k;i++) if (a[i]<=t) a[i]=t-a[i];

 else a[i]-=t;

 n-=t;

 }

 else

 {for (i=start;i<k;i++) if (a[i]>t) a[i]=2*t-a[i];

 n=t;

 }

}

int main(void)

{

 int i;

 cin>>n>>k;

 for (i=0;i<k;i++) cin>>a[i];

 for (i=0;i<k;i++) {if (n==1) break;

 fold(i);

 }

 cout<<n<<endl;

 return 0;

}
(

(

