
Reading 

(Analysis) 

 

There are two main ways to solve the problem – one of them is, sadly, 

too slow; however a contestant will get 50 to 60 points if implementing it well. 

 First solution: dynamic programming. Most of the competitors will easily 

see the almost trivial solution by dynamic programming. Since for a given sum 

N and letter L the answers depends only on the number of words with sum N – 

factor(L, Ai), where Ai is every other possible letter, a table dyn[26][N] is 

sufficient to find the answer (it also can be optimized if using iterative 

approach). And since for each of its cells we should check all 26 letters, the 

overall complexity is O(26 * 26 * N) = O(N). This solution will not get 100 points, 

because N can be quite large, and also the constant 26 * 26 is also of great 

importance for relatively small values of N. 

 The second solution uses a bit more non-trivial knowledge. Each 

competitor in this group should know that the number of paths using EXACTLY 

E edges in a graph, given by an adjacency matrix, is this matrix, raised to the 

Eth power. We can build a graph of the relations between letters in the 

alphabet and raise its matrix to the Nth power in order to get the answer of our 

problem. Although N could be quite large there is a logarithmic algorithm to 

do this and fit in the time limit. Here comes a problem, though. What should 

we do with the different distances between letters? Putting them in the matrix 

instead of ones and zeroes is wrong – the exponentiation of the matrix 

wouldn’t work. Thinking in the same direction a bit more gives us the answer – 

since the edges are relatively short – with maximum length of only 5 – we can 

expand our original graph by replacing each edge with a number of new 

edges, each with length one, giving the same total length of the original one. 

Raising the new matrix to the Nth power will give us the number of words with 

complexity N. The last problem we face is that we need not only the words 

with complexity EXACTLY N, but also the number of words with lower 

complexity. This is solved by adding an artificial node with the meaning of 

“blank” symbol. It will have a directed edge to each of the letters and also an 

edge to itself. Using these edges will allow us to make words “shorter” – they 

will have some blanks in front of them, but this is exactly what we wanted. The 

extended matrix with the new node, raised to the Nth power will contain 

exactly the answer to the problem – the number of paths (words) with length 

(complexity) less than or equal to N. 

 Algorithm complexity: Since each node should be expanded into five 

new ones in order to guarantee paths with length up to 5, and adding one 

more as “empty character” we get matrix A[26*5+1][26*5+1]. The binary 

logarithm of 1,000,000,000 is 30, which is the number of steps we need to raise 

the matrix to the maximum possible power, and another K3 algorithm for 

matrix multiplication, where K is the dimension of the matrix (in this case 

26*5+1=131). This gives us O(131^2 * log(N)). Although a constant, 131^2 is 

significant enough to influence a great deal the execution time of this 

solution, so the contestants should not exclude it from their complexity 

calculations. 


