NUM

(Solution)

As you can see from the problem statement there are several different solutions for which the contestants could receive different points. We will discuss the different solutions for the different constraints in the problem:

 1) The answer of the problem is less or equal to 1,000,000. The solution of the task with these constraints is awarded the least number of points because the solution requires simple programming skills and algorithm knowledge. Because the answer of the task is less or equal to 1,000,000, a simple Backtracking technique on the length of the numbers which we could get with the given operations could help us generate all numbers and then easily count them and find the answer of the task. The Backtrack algorithm puts each possible digit 0-9 (if we have not yet put all such digits in the currently generated number) on the last place in the currently generated number and then adds 1 to a counter in which we will store the answer of the task.

An implementation of the explained algorithm is added in the solution folder.

2) 0 <= А < 1014

The solution of the task with these constraints again uses a Backtracking technique. The difference with the former solution is that we generate each possible subset of digits of the number A which we could use. After that we count the numbers which we could get when we use each of these digits exactly once using combinatorics formula.

Let’s say we chose a digit subset a1a2...an, n <= 10. Let’s have b1 times the digit a1, b2 times the digit а2, and so on, bn times the digit аn. The number of different permutations of the given subset is : (b1 + b2 + … + bn)!/(b1! + b2! + … + bn!).

We have to be careful when we choose a digit 0. We should not count numbers with length more than 1 and a leading zero.

An implementation of the given algorithm is given in the solution folder. The computional complexity of the given algorithm is O(2^n*n) (This complexity could be easily reduced to O(2^n)).

3) 0 <= А <= 10100

Like most of the experienced contestants must have guessed, the solution of the given task with these contstraints uses a Dynamic Programming technique and some combinatorics.

We define a state dp[need][pos], as the number of different numbers, which we could generate from the number A, and which have length need and which use digits, bigger or equal to pos.

For the computation of dp[need][pos] we have two possible cases:

 а) In the generated number we will use the digit pos. In this case when we generate the numbers we will use the digit pos 1, 2, …, or k times where k is the number of times we have of the digit in the number A (Of course k should have the constraint k <= need). If we want to put i times the digit pos we could use the following formula:

 dp[need][pos] += C(i,need) * dp[need-i][pos+1]

C(i,need) – The number of ways to put the digit pos on i of all need positions. It is calculated using the Binomial Coefficients.

Note: We have to be careful when we choose digit 0 so that it is not placed on 1st place in our number.

 б) In the generated number we will not use the digit pos. In this case we do the following:

 dp[need][pos] += dp[need][pos+1]

The complexity of the following algorithm is О(n^2). An implementation of this algorithm is given in the solution folder.

